THE MAGNETIC FIELD IN INHOMOGENEOTUS
TURBULENT FLOW

S. I, Vainshtein

We consider a particular model of magnetohydrodynamic turbulents. The most fundament-
al assumption we make is that the velocity correlation time is negligible. By using a selec-
tive summation of the perturbation theory series an exact equation for the magnetic field is
obtained when the mean square value of the velocity depends on coordinates, i.e., when the
turbulence isinhomogeneous. The result makes it possible to obtain the "maecroscopic"
Maxwell's equations, i.e., the equations for the large~scale components of the electromag-
netic field.

In problems of magnetohydrodynamic turbulence the turbulence is usually considered homogeneous.
The results of such considerations reduce basically to the following. If a weak large-scale magnetic field
is impressed on a high~conductivity turbulent fluid (the scale of the field being much larger than the scale
of the pulsations) in the absence of gyrotropy there is an anomalous diffusion of the field [1].

Actual turbulence is always inhomogeneous. For example, there is always a boundary of the turbu-
lence. It would seem that an inhomogeneity in the intensity of the pulsations would lead simply to anomal-
ous diffusion with a diffusion coefficient depending on coordinates. In this case macroscopic electrodynam-
ics, i.e., the equations for the large-scale fields, would not differ from the "microscopic® or ordinary
Maxwell's equations, but in Ohm's law the ordinary electrical conductivity would be replaced by an anom-
alous conductivity depending on coordinates. The fact is that the inhomogeneity gives rise to a new effect
analogous to diamagnetism, This was first noted by Ya. B. Zel'dovich [2] for the idealized two-dimension-
al case and by Radler [3] for a weakly conducting fluid.

We consider a high-conductivity fluid, Since pulsations of the magnetic field in this case are not
small in comparison with the large-scale field, the velocity perturbation theory series cannot be broken
off as is done in [3]. In using selective summation of the series we neglect the correlation time of the
pulsations, This is justified since it will be shown below that the characteristic time of variation of the
magnetic field is appreciably longer than the correlation time,

We have the familiar equation for the magnetic field H

%tE =rot[v, H] + v, AH
where v is the velocity and v, is the magnetic viscosity. We assume that the velocity field is given so
that the problem is purely kinematical, The equation of motion is not required. This procedure is pos-
sible if the energy of the large-scale magnetic field is less than the energy of the pulsations. We proceed

to the specification of the velocity field.

1. Derivation of the Velocity Spectrum Tensor. We write v (X, t) in the form

Y (X, t) = f(X) u (X, i)1 <u2> =1 (1.1)

The symbol < > denotes averaging over the pulsations. This is possible if <v®> does not depend on
time, which we assume is the case. We also assume that the inhomogeneity is weak, i.e,, that f(x) varies
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slowly with the corvrelation length, Then one cannot expect that the velocity field will be isotropic since
Vf determines a preferred direction. Strictly speaking, the direction of the large-scale field can also be
singled out, but since the energy of this field is small, we neglect its effect on the motion. Then the cor-
relation tensor has the form [4]
03 (X1, 1) 05 (Xq, 1)) = f(xl)f(x2)u(A6ij + Brir; + Cyry g%'—g— _Cgr,- ;’%)
F=x—x, 9(x)=/(x) (1.2)
Here A, B, Cy, and C; are functions of r and (rV¢). Since the inhomogeneity is weak, we set
FEI T (%) =9 (x)) + Yy (e Vo)
A= A4;(r) + (Vo) Ay (), C; = (4 () - (xV) Ce (r)
B=B,(r) + (V) B (r), Ca=C5() + (Vo) Cs(r) (1.3)

We substitute (1.3) into (1,2) and require that
o3 (%1) 5 (Xp)> = <05 (Xg) w3 (X1)

retaining first-order terms in the small quantity rido /an in the tensor. Then (1,2) takes the form
s ag atp 1
<03 (%) 25 (X)) = @ (x,) [Alﬁii + B+ Cs (?‘i Tz, ' 7, ) } + 5 (V) [4,8i; + Byrirj) 1.4

We go over to the Fourier representation of (1.4)

o

v =\ uexpi ) dk, o) ={ox& expi(kr)dk

v (x1) 95 (%e) > = S Cui (ky) uj (ko) expi [(kyxy) + (kaxy) | dky dky = Bfu (ky, k) exp i [(kyx,) + (kr)] dk, dk

Fig s, X) = (k) [ (4 (0) — LS iy — - A (8) (o + o)

+(B- K222 )s,) +C(k>§(p<k1—~ks>q>(ka) Ukibsy — sl ey

This tensor is considerably simplified if it is required to be solenoidal

kifij(kp k) =0, (ky — &) fiy(k, k) =0 (L.5)
The first of conditions (1.5) reduces f j to

e [(4 () — L2 ) R8sy — k) — 4. (0 83, — ks )| (1.6)

The second of conditions (1.5) does not add anything new; it leads to

¢ (i) oK. (klk) dA

(klk) kj — KRy j) =

This equation is satisfied automatically, since it is assumed that ¢ (r) varies slowly and that only
first derivatives are taken into account; the last equation is quadratic in kj. We write out the expression
for

f,ij (ky, ko) = (u; (ky) u;(ky)y =@ (k; + ko) [4 (Fea) (kziku‘ — (kk,) 8;5)

dA (k. 1
+ dIEZZ) ok, \'2 (kyks)) (haskeas — ka28;;5)] 1.7

If the velocity field is homogeneous (1.7) goes over into the well-known spectral tensor

¢ (ky + kp) = D5 (ks + k)
75 (ky, ko) = D8 (ky + ky) A4 (k) (5,°0;; — Eyihess)



2. Derivation of the Equation for the Magnetic Field. In the following we use the velocity perturba-
tion theory series. Let H(k, t) be a Fourier component of the magnetic field

H(k, t)= D) H®, H® = H (k, 0) exp (— v,k%)
n=0
t

HOD (k, 8) = i § exp (Ko (6 — )] dty [k [ (k= K, £) HOO (i, 1)) i’ @.1)
1]
Averaging over pulsations we separate out the large-scale component

(HOYy = B, (Hy =B

We use the following model of turbulence: 1) the velocity probability distribution is Gaussian; 2) we
neglect the correlation time

ug (ky, 1) uj (ky, ) = md (£ — 1) '35 (ky, k)

Using this model we find that the odd terms of the series vanish and the even terms obey the recur-
rence relation
1

B — L. Q exp [Vk® (f, — 1)] Sdkl [k {(k — ky) @ (k — ky) Ben-2(k,, £,)]1dt, 2.2
0

t
+ pS exp [V k2 (1, — 1)1 Sdk1 k [k— ky) @ (k) B9 (k — ky, £,)]] dt,

0

p= %SA(k)chdk
It is easy to show that the equation for which (2.2) is the perturbation theory series has the form
BBUD 4 v™B (K, 1) = £- Y ke [k [(k — ko) @ (k — ko)B (ky, £)1]
+ 7 i (K [k — k) @ () B (k—k,, 0)1] (2.3)
or in r-space

9B (r, i
a(: 9 _ v, AB — —‘Z-rot [Ve,B] — prot ¢ rot B=—rotv, (1 -+ x)%rot (1 +-x)B (x=py/v,) (2.4)

where ¥ is the magnetic Reynolds number. Equation (2.4) describes the diffusion of the large-scale field
B in an inhomogeneous conductor with a variable electrical conductivity
Vett = Vi (1 -+ %), Gerr=c (1 + %) (2.5)

and a variable magnetic permeability

p=1+x" (2.6)
In the most interesting case, x >> 1, Voff >V, Oeff <0, and 4 <1, Now we can write the macro-
scopic Maxwell's equations
i1 4B
¢ ar
i, 1
rot H=——j, E = (e}, H:TB

= —rot E, divE = 4np, divB =0 2.7

Here e is the intensity of the electric field.

Ohm's law takes the form

. Ec
V= (9
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We write the expression for rot B, i.e., for the macroscopic current

_ 4n oE 1 lvx, Bl

Equation (2.9) is identical with Radler's equation [3] obtained for small pulsations of the magnetic
field by calculating the quadratic effect. The pulsations will be small if y «1,

3, Boundary Value Problem, Suppose ¢ is constant in a certain region and falls to zero in the boun~
dary layer of this region (furbulence in a bounded region). The boundary conditions for the current can be
obtained by integrating (2.4) over the volume of the boundary layer, i.e., in the usual way. As a result, we
obtain

(1 + y)roty,B =rot, B (3.1)

Here rot t and rot t denote the transverse components of rot B inside and outside the region, respec-

tively. Of course (3.1) can be obtained from (2.9) also. We note that, as usual, Et is continuous at the
boundary. Naturally the normal component of the current also is continuous at the boundary.

The boundary conditions for B are

Bm = Brw (i + X)% th = Bta (3-2)

The second condition of (3.2) follows from (2.6)‘ and can be obtained by integrating (2.9) over the vol-
ume of the boundary layer. The surface currents are given by the second term on the right-hand side of
(2.9).

Because of the variation of the electrical conductivity space charges are produced, or for an infinite~
ly thin boundary layer, surface charges.

Taking the divergence of (2.9) and using (2.7) we obtain

¢ (Vyrot B)

divE = dnp = o

(3.3}

Using the equation of continuity and Ohm's law we find that the time for the charge in (3.3) to build
up is (1 + x)1/2 /47mo. Thus the equations of quasistationary electrodynamics (2.7) will be justified, i.e., the
displacement current can be neglected, if

a
ty> LT (3.4)

where t; is the characteristic time of the process.

We note that the analogy with diamagnetism is not complete. If the turbulent region is bounded by a
vacuum, the following situation can arise: o decreases to zero in the boundary layer, but ¥ is constant in
this layer,

Then, instead of (2.9) and (3.2), we have

rotB:ﬂ‘- SE

z m 2 an = an’ th = Bt:

when the microscopic magnetic permeability is unity.

4, The Two-Dimensional Case, It is of interest to consider the idealized two~dimensional case vy =
0, By = 0, 8 /0z = 0, since it can be solved by an independent method [2]. Here the equation for the vector
potential is completely analogous to the familiar heat equation for a fluid, This makes it possible to test
the method described above,

Instead of (2.2) we obtain, in this case,

i
Bow = 2 {oxp (v,° (6 — 1)1 {dl 610k — k) (k—ke) BEw-o(k,, )11y
e
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t
-2 Gexp [k 12 — 001l [KL(k ~ ki) () B8 (k — ey, 1)1t
0
p=2(ama
k= {kxq kyv.o}r k1 = {klxl klw 0}! BY = {Bx(f)’ Bu(f)! O}

Bk, t) satisfies the equation
B (k,
BED 4 v, hoB (k,0) = -L-{ [k [k (k — 1) B (ly, 011 d B
The equation
OB (v, ¢
___(a‘t_). = — rot v, rot (1 +—?2‘—)B 4.1
describes the diffusion of the field when p= (1 + 1/g)()'l. We write the equations

Tt B = e o T

4n Es 1 [VyB] rob H = ﬂ'GE
[2

Although we are concerned here with a uniform electrical conductivity, the boundary value problem
in the two-dimensienal case is similar to that in the three~dimensional problem. Bt and rot; B are discon-
tinuous at the boundary but the magnitude of the discontinuity is different. No space charge appears in the
two-dimensional problem since the condition

divj=-2_j,=0

is satisfied automatically,

5. Discussion of the Results. At time t = 0 let a weak magnetic field be impressed on a high-con-
ductivity fluid. In addition suppose turbulence is induced in part of the fluid. Let v = 0 and B= B(x, 0) at
t = 0. B is continuous and roty B = 0 at the fluid-vacuum boundary. We do not interest ourselves in the
question of how and for how long the turbulence is induced.” We assume that at time t; a stationary state is
reached, i.e., the statistical characteristics of the velocity become independent of time. At this instant
diamagnetic properties appear and the field begins to be expelled from the turbulent region. The charac-
teristic time of expulsion is

L2

=5 Ty

Here Iy is a dimension of the turbulent region. The problem of the damping of the total field is now
reduced to the problem of finding the eigenfunctions and eigenvalues of (2.4) by substituting B = A(x) exp X
(—yt) [5]. To find the approximate value of the minimum 7y, and thereby the characteristic damping time
of the field, it is sufficient to use for E the equation obtained from (2.7).

1. oE

ot = —rot (1 4 y)*rot E (5.1)

Equation (5.1) is true for all space if it is assumed that o goes to zero continuously at the fluid-
vacuum boundary. We multiply (5.1) scalarly by E and integrate over all space, taking account of the fact
that Et is continuous at the boundary of the turbulent region. The boundary conditions for roty E are ob-
tained from (3.2)

A_d ¢ B L " .
2 dt *BVm(i—}—x)‘/"dr— 5(1 +X) (robE) dr (5.2)

Using (5.2) and the boundary conditions it is easy to estimate the damping time of the field
ty = L3vy, (5.3)

We recall that (5.3) agrees with the damping time of the field in a solid conductor where L is a di-
mensionofthe whole fluid. It is obvious that (5.2) and (5.3) are valid if the dimensions of the nonturbulent
part of the fluid are not too small in comparison with Ly, i.e., if 12 > 13(1 +x)~!, where L, is the smallest
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diameter of the nonturbulent part of the fluid, Otherwise the magnetic field is not completely expelled and
the damping of the total field occurs for a time t,.

Tt is easy to see that t; >t;, > I /v, where 7 and v are respectively a representative dimension and
a characteristic velocity of the pulsations. Consequently neglecting the correlation time is justified.

In conclusion, the author thanks R. Z. Sagdeev and V. E. Zakharov for a discussion of the results,
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